Normal Appearing and Diffusely Abnormal White Matter in Patients with Multiple Sclerosis Assessed with Quantitative MR
نویسندگان
چکیده
INTRODUCTION Magnetic Resonance Imaging is a sensitive technique for detecting white matter (WM) MS lesions, but the relation with clinical disability is low. Because of this, changes in both 'normal appearing white matter' (NAWM) and 'diffusely abnormal white matter' (DAWM) have been of interest in recent years. MR techniques, including quantitative magnetic resonance imaging (qMRI) and quantitative magnetic resonance spectroscopy (qMRS), have been developed in order to detect and quantify such changes. In this study, qMRI and qMRS were used to investigate NAWM and DAWM in typical MS patients and in MS patients with low number of WM lesions. Patient data were compared to 'normal white matter' (NWM) in healthy controls. METHODS QMRI and qMRS measurements were performed on a 1.5 T Philips MR-scanner. 35 patients with clinically definite MS and 20 healthy controls were included. Twenty of the patients fulfilled the 'Barkhof-Tintoré criteria' for MS, ('MRIpos'), whereas 15 showed radiologically atypical findings with few WM lesions ('MRIneg'). QMRI properties were determined in ROIs of NAWM, DAWM and lesions in the MS groups and of NWM in controls. Descriptive statistical analysis and comparisons were performed. Correlations were calculated between qMRI measurements and (1) clinical parameters and (2) WM metabolite concentrations. Regression analyses were performed with brain parenchyma fraction and MSSS. RESULTS NAWM in the MRIneg group was significantly different from NAWM in the MRIpos group and NWM. In addition, R1 and R2 of NAWM in the MRIpos group correlated negatively with EDSS and MSSS. DAWM was significantly different from NWM, but similar in the MS groups. N-acetyl aspartate correlated negatively with R1 and R2 in MRIneg. R2 of DAWM was associated with BPF. CONCLUSIONS Changes in NAWM and DAWM are independent pathological entities in the disease. The correlation between qMRI and clinical status may shed new light on the clinicoradiological paradox.
منابع مشابه
The Assessment of Structural Changes in MS Plaques and Normal Appearing White Matter Using Quantitative Magnetization Transfer Imaging (MTI)
Introduction: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS), affecting mostly young people at a mean age of 30 years. Magnetic resonance imaging (MRI) is one of the most specific and sensitive methods in diagnosing and detecting the evolution of multiple sclerosis disease. But it does not have the ability to differentiate between distinct histopathologic...
متن کاملA Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملUtility of a Multiparametric Quantitative MRI Model That Assesses Myelin and Edema for Evaluating Plaques, Periplaque White Matter, and Normal-Appearing White Matter in Patients with Multiple Sclerosis: A Feasibility Study.
BACKGROUND AND PURPOSE T1 and T2 values and proton density can now be quantified on the basis of a single MR acquisition. The myelin and edema in a voxel can also be estimated from these values. The purpose of this study was to evaluate a multiparametric quantitative MR imaging model that assesses myelin and edema for characterizing plaques, periplaque white matter, and normal-appearing white m...
متن کاملOrientation Dependent MR Signal Decay Differentiates between People with MS, Their Asymptomatic Siblings and Unrelated Healthy Controls
R2* relaxometry of the brain is a quantitative magnetic resonance technique which is influenced by iron and myelin content across different brain regions. Multiple sclerosis (MS) is a common inflammatory, demyelinating disease affecting both white and grey matter regions of the CNS. Using R2*, increased iron deposition has been described in deep gray matter of MS patients. Iron accumulation mig...
متن کاملGray matter N-acetyl aspartate deficits in secondary progressive but not relapsing-remitting multiple sclerosis.
BACKGROUND AND PURPOSE Spectroscopic examination of multiple sclerosis (MS) patients has revealed abnormally low N-acetyl-aspartate (NAA) signal intensity, even in brain tissue that appears normal on high-resolution structural MR images but has yielded inconclusive evidence to distinguish the well-documented clinical differences between MS subtypes. This study used proton MR spectroscopic imagi...
متن کامل